《分数与除法》教学反思

时间:2025-10-15 18:17:08
《分数与除法》教学反思汇编15篇

《分数与除法》教学反思汇编15篇

身为一名刚到岗的人民教师,我们要在课堂教学中快速成长,通过教学反思可以快速积累我们的教学经验,那么教学反思应该怎么写才合适呢?以下是小编收集整理的《分数与除法》教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

《分数与除法》教学反思1

分数与除法是五年级下册第四单元分数意义中的内容,是建立在除法意义的平均分和把一个物体或多个物体看做单位“1”进行平均分概念的基础上进行教学的。这部分知识加深和扩展了学生对分数意义的理解,同时也为后面讲解假分数以及把假分数化成整数或带分数做好准备。

在本节课的教学中,我首先选择恰当的切入点,从解决简单问题入手,提出了这样几个问题:把6张饼平均分给3个人,每人分到几张饼?把一张饼平均分给2个人,每人分到几张饼?把1张饼平均分给3个人,每人分到几张饼?在此基础上,观察三个算式和得数,得出结论:一张饼的1/3是1/3张饼。为促进学生主动沟通知识间的内在联系做了一个思路引领。

其次充分展现学生的思维过程,以加深学生对知识的理解。我在这里提出了新的问题:如果把3张饼平均分给4位同学,每人分到几张饼?怎样列式?结果每人分到几张饼呢?请同学们借助手中的学具,分一分、拼一拼,看看到底每人分到多少张饼呢?这一问题的解决过程,既是本节课教学的'重点,又是学生理解的难点。我让学生亲自动手分一分,拼一拼,并让学生展示分的过程和分得的结果是怎样的,学生出现了不同的分法和结果。我在这里引导学生展开讨论,使学生在实际操作交流中,对知识的内在联系有了更好的理解。

本节课的教学中,我围绕分饼的方法展开交流,引发学生不断的数学思考,促进学生在动手操作,主动思考中沟通知识间的内在联系,帮助学生不断扩展已有的知识结构,加强了思维深刻性的培养。在教学新课时,学生说的很好,我应该最后再引导学生完整的说出:每人分到这张饼的1/4,3张饼的1/4就是3/4张饼,即3张饼的1/4展开后就是一张饼的3/4。而我在课前的预设中是有这个环节的,结果在教学中,把这个环节落下了。

在今后的教学质量中,应尽量把数学课上的更扎实有效,使学生的数学思维能力和学习能力得到更好的发展和提高。

《分数与除法》教学反思2

《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。

在这节课的教学中,我觉得有以下几方面值得我去思考:

一,在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。在教学"把3张饼平均分给4个同学,每个同学应分多少张饼?"时,我让学生借助圆形纸片在小组内合作进行分割,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的.同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。

《分数与除法》教学反思3

分数与除法的关系是在学习了分数的意义后进行的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以沟通分数与除法的联系至关重要。

一、成功之处

1.恰当铺垫,有利于分散难点。

为有效地分散算理,教学中设置的教学情境,以比较简单的题目形式分层呈现,比如:将3块月饼平均分给4个小朋友,每个小朋友得多少块?将1块月饼平均分给3个小朋友,每个小朋友得多少块?……在该环节中,教师可借助实物操作着重引导学生理解:把1块月饼平均分成4份,其中的每一份都是这块月饼的1/4,也都是1/4块,通过结合生活实际的一些数据较小题目的出示作为铺垫,可以帮助学生更好地认识分数与除法的联系。

2.实际操作,感悟新知识。

《数学课程标准》指出:“数学教学,要让学生亲身经历数学知识的形成过程。”也就是经历一个丰富、生动的思维过程,在教学中,在一块月饼平均分给四个小朋友,求每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的理解。在解决把3张饼平均分给4个小朋友,每个小朋友分得多少的问题时,由于问题难度增加了,所以我就请他们四人一小组想办法,进行动手操作尝试,并让小组派代表上台展示分的过程。学生通过动手操作,得出两种不同的分法,引申出两种含义:即每人分得1张饼的四分之三,也可以说是3张饼的四分之一。通过这样两次动手操作的过程,学生充分理解算理,他们在自己的尝试、探究、猜想、思考中,不断解决问题、再生成新的问题,为探究分数与除法的关系搭建了沟通的桥梁。

3.鼓励发现,探索分数与除法的关系。

探索是学生亲自经历和体验的.学习过程,引导学生观察1÷3=1/3?? 3÷4=3/4这两道算式,鼓励他们想一想:①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?②用分数表示商时,除式里的被除数,除数分别是分数里的什么?③分数与除法的关系是怎样的?以问题为主线,一步一步地引导学生归纳出了分数的意义,理解了分母、分子的含义。

二、改进之处

1.分数与除法的区别没有理解透彻。

虽然学生对分数与除法的联系学生理解的比较透彻,但是它们之 ……此处隐藏10872个字……。用字母表示分数与除法的关系,当教师提出用a表示被除数,b表示除数时,学生很轻松就用a/b表示出来;在探究“分数是不是就是除数”,学生的争辩非常激烈,点燃了课堂学习的热情,有学生认为从被除数÷除数=被除数 / 除数的关系中,非常明确说明分数就是除数,不然怎么用“等于”;有学生从教师提出:“我们学过了哪些数”中得到启发,认为分数是一个数,而除法是一道计算的式子,反对上面学生的意见,得出分数不等于除法;有人认为意义也不同,分数表示把单位“1”平均分成若干份,表示其中的一份或几份叫做分数,而除法表示把一个数平均分成几份,每份是多少??通过争辩,明确分数和除法的各自意义,提示了“分数相当于除法”的生成目标,体验了成功所带来的信心和力量,实现了以人发展为本的教学理念。

“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自己的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”.分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

一、以解决问题入手,感受分数的价值。

从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的`角度来设计的。

二、分数意义的拓展与除法之间关系的理解同步。

当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

《分数与除法》教学反思14

在讲分数的产生时,曾提到计算时往往不能正好得到整数的结果,常用分数来表示,这实际上已经初步涉及分数与除法的关系。教学分数的意义时,讲到把一个物体或一些物体组成的一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确的点出来,现在学生知道了分数的意义,再来学习分数与除法的关系,使学生初步知道两个整数相除,只要除数不为0,不论被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲解假分数以及把假分数化为整数或带分数做好了准备。

成功之处:

1.读懂教材编写意图,准确把握每个例题的`安排。在例1的教学中是根据整数除法的意义列出算式,根据分数的意义计算结果,使除法计算与分数联系起来。在例2教学中,列式比较容易,但是计算结果相对有些难度,但是对于部分孩子来说,可以得出计算结果,但是为什么学生说不清楚,因此通过学生的动手操作,实际分一分,学生知道了其中的结果,能根据分的结果说出所表示的意义。

2.留给学生充分时间,让学生能够通过不同的方法在合作交流中探索出计算的结果。在操作中出现了以下三种方法:

(1)先把每个圆剪成4个四分之一块,再把12个四分之一平均分给4个人,每个人得到3个四分之一块,也就是分得四分之三块。

(2)把三个圆摞在一起,平均分成四份剪开,得到四分之三块。

(3)先把2个圆摞在一起,平均分成2份,剪成4个二分之一块,分给四个人,每人得到二分之一块,再把1个圆平均分成4份,每人得到四分之一块,最后把二分之一和四分之一合起来,就是每人分得四分之三块。

(4)1块月饼平均分给4个人,每人分得四分之一块,3块月饼平均分给4个人,每人分得3个四分之一块,是四分之三块。

不足之处:

对于除法算式的两层含义,个别学生还是有些混淆。

再教设计:

让学生正确区分分率和实际数量的区别,以便更好的理解分数的意义。

《分数与除法》教学反思15

“分数和除法的关系”主要引导学生探索并理解分数与除法的关系,教材呈现的直观的情境图:把3块饼平均分给4个小朋友,每人分得多少块?分饼的情境,对于五年级的学生来说相当熟悉,不但生活中有,以前的课本知识中也有,生活、学习的经验体会到和以前分饼的问题有相同之处,都是用饼分给一些小朋友,每个小朋友可以分得多少个饼的问题,算式是3÷4=?,有直观的情境图帮助学生思考,有学生知道这个算式的结果是3/4块。借机可以让全体学生直观地体会结果不满1时可以用分数表示,直观帮助学生初步体会分数与除法的关系。五年级数学下册分数和除法教学反思

验证“3÷4是否是3/4块,也就是每人分得是3/4块饼吗”是这堂课的难点,操作能帮助学生理解。方法一是一个饼一个饼地分,将第一个饼平均分成4份,每个小朋友分得其中的一份,也就是分得1/4个饼,用同样的方法分别将第二、第三个饼也分,每个小朋友还是分得1/4块饼,三次一共分得3个1/4块饼,合起来是3/4块饼;方法二是三个饼叠在一起分,平均分成4份,每个小朋友分得其中的一份,也就是每人分得3块的1/4,有3个1/4块饼,即3/4块。操作、图像都是直观的不同手段和形式,同样可以帮助学生理解“3/4块饼”得到的过程,形成丰富、准确的表象。

观察等式3÷4=3/4、3÷5=3/5可以发现分数和除法之间的关系,有了板书的直观支撑,学生很容易知道被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数的分数线;有了板书的直观支撑,学生很容易知道除法与分数的区别,除法是一种四则运算之一,而分数是一种数,相对于自然数、小数而言的另外一种形式的数。在理解、掌握分数与除法关系的基础上,通过练习让学生进一步沟通分数与除法之间的关系,形成相应的技能。如,先将被除数改写成分子,后将除数改写成分母来的比较简单,且不容易出错等等。板书是可以一直留在学生视线中的`直观媒体,便于学生反复观察、比较,可以帮助学生获得相应的结论。

情境图、动手操作、直观演示、板书这些形式和手段,可以帮助学生直观地理解知识和运用知识。“试一试”是让学生把低级单位的单名数换算成高级单位的单名数,题目:7分米=( )/ ( )米 23分=( )/ ( )。学生交流中有两种思路,一是运用分数的意义来解决问题的,把1米看做单位“1”平均分成10份,7分米是这样的7份,所以7分米=7/ 10米;二是低级单位换算成五年级数学下册分数和除法教学反思高级单位时,用除以进率的方法解决问题,即7÷10=7/10(米)。运用分数的意义和规律准确完成单位之间的换算,学生在思考时是离不开直观的支撑的。直观是学生理解的基础,直观是沟通知识的桥梁。

《《分数与除法》教学反思汇编15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式