三角形的面积教学设计

时间:2025-10-17 13:53:08
三角形的面积教学设计15篇(精华)

三角形的面积教学设计15篇(精华)

作为一名教学工作者,通常需要准备好一份教学设计,借助教学设计可以让教学工作更加有效地进行。写教学设计需要注意哪些格式呢?以下是小编收集整理的三角形的面积教学设计 ,欢迎大家分享。

三角形的面积教学设计 1

一、教学内容:人教版小学五年级上册教科书P91内容及P92内容。

二、学习目标:

知识与技能:探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,从而发展学生的空间观念和初步的推理能力。

情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

三、教学重难点:

教学重点:探究并掌握三角形的面积计算公式,能正确计算三角形的面积。

教学难点:理解三角形面积计算公式的推导过程。

四、教学准备:

课件、三角形纸片、剪刀等。

五、教学过程:

一、复习引入

亲爱的同学们,我们既熟悉,又让我们感到神秘的数学丰富着我们对世界的认识,数学中的数,让我们对生活中的事物的有了量的认识,而形则描绘出了我们美丽世界中物的形状。

让我们一起回忆一下,我们学过哪些图形的面积?它们是如何计算的?

其中平行四边形的面积是我们上节课学习的。谁来说说我们是怎样推导出平行四边形面积的计算公式的?

通过割补等方法把求新学习的平行四边形的面积转化为求已学过的图形的面积?回想一下平行四边形的面积和它的什么有关?它的面积公式是?S=ah

今天就让我们一起来学习这些平面图形中的三角形的面积。谁来说说我们都学过有关三角形的哪些知识?一起回顾一下三角形的底和高。猜一猜它的面积可能跟什么有关呢?我们能否也通过把它也转化成我们学过的图形来研究呢,让我们一起探究它的面积吧。

二、新课探究

请同学们通过操作手中的图形(拼一拼、折一折或者剪拼的方法,看是否把它也转化成我们学过的图形,进而得到三角形的面积公式?)看是否能求出三角形的面积计算公式。

请先看操作要求。

操作要求:

1.前后两排4人小组开展活动,先商讨怎么操作可以求出三角形的面积。

2.按照商讨的方案,动手操作,验证商讨方案。

3.根据操作过程,组内说清楚怎么操作的,怎么得到三角形的面积计算方法。

现在请带着这样几个问题开始操作吧。

问题:

1.你们用两个怎样的三角形拼图?能拼出什么图形?

2.拼出的图形的面积你会算吗?

3.拼出的图形与原来的三角形有什么联系?

请各小组选派一名同学来说一说。

让学生按照问题去说,一边说一边指着图形。

现在的长方形的长和原来的三角形的底有什么关系?现在的长方形的长和原来的三角形的高又有怎样的关系?初步给学生建立长方形和三角形中长和底相等,宽和高相等。

拼成的'平行四边形的底和原来的三角形底有什么关系?平行四边形的高和三角形的高又有怎样的关系?引导学生感受平行四边形和三角形是等底等高的。

拼成的平行四边形的底和原来的三角形底有什么关系?平行四边形的高和三角形的高又有怎样的关系?引导学生感受平行四边形和三角形是等底等高的。再次让学生感受拼成的平行四边形和三角形底和高之间的关系。

拼成的正方形的边长和原来的三角形的底有什么关系?现在的正方形的另外一条边长和原来的三角形的高又有怎样的关系?初步给学生建立长方形和三角形中一条边长和底相等,另外一条边长和高相等。

同学们那你们现在能得出三角形的面积计算公式吗?

大家有说三角形的面积公式为底×高÷2,也有人说为长×宽÷2,还有人说是边长×边长÷2,同学们你们觉得用哪个更合适呢?

这里长方形、正方形和平行四边形之间是什么关系?是的,它们是特殊的平行四边形,所以三角形的面积公式应该是底×高÷2,用字母表示为:S=ah÷2。

同学们现在你们知道三角形的面积该怎么计算了吗?

那现在老师考考大家。

三、巩固练习

请同学们认真审题,仔细计算,这个三角形的底和高分别是几?它的面积应该怎么算?看看谁算得又对又快。

同学们你们看,这是代表我们是少先队员的红领巾,它是什么形状?那它的面积你会计算吗?大家快速计算。

同学们真棒,会计算红领巾的面积了。

看来大家掌握地还不错,那同学们老师再考考大家一点简单的。

二.我会填

(1)、一块三角形草地,底边是3.6米,高是5米,它的面积是多少平方米?

(2)、一个三角形的面积是16平方厘米,与它等底等高的平行四边形的面积是()平方厘米。

三.我是小法官。(对的打“?”,错的打“×”)

(1)两个直角三角形一定可以拼成一个长方形。

(2)两个三角形的面积相等,形状一定也相同。

(3)一个三角形的底不变,高扩大到原来的3倍,面积也扩大到原来的3倍。

同学通过刚才的练习,你认为在求三角形的面积时需要注意什么呢?

四、课堂小姐

同学们,通过这节课的学习你有什么收获?

同学们如果只有一个三角形,你能通过什么方法求出它的面积公式呢?老师这里还有一些方法,你们想知道吗?大家请看。

同学们你们看一个问题可以用不同的方法去解决,老师希望同学们以后碰到问题,也可以勤思考,用不同的方法去解决。

今天的课就上到这,同学们再见。

六、布置作业:数学课本第93页习题。

七、板书设计:三角形的面积

学生作品展示

三角形的面积公式:S=ah÷2

教学反思:在本节课教学中,刚开始引入回顾平行四边形学生都很积极地参与其中,对于新课内容在讲的过程中,在小组探讨的过程中,学生大部分都积极地参与到讨论中,在结论展示的过程中,因为第一个孩子对分发的图形是什么有点不清楚,所以在讲述中出现了问题,孩子也一下紧张起来,后面的讲述就有点少,对于等底等高的渗透地不够深入,后期练习中需要加强。

三角形的面积教学设计 2

【教学内容】

探索活动(二)《三角形的面积》教材第25页——26页

【教学目标】

知识目标:①使学生经历、理解三角形面积公式的推导过程。

②能正确运用公式进行三角形面积计算,初步学会用转化的数学方法解决 ……此处隐藏21915个字……的高是7分米,底是8分米,和它等底等高的平行四边形的面积是( )平方分米。

(3)一个三角形的面积是4.8平方米,与它等底等高的平行四边形的面积是( )

(4)一个三角形的面积比它等底等高的平行四边形的面积少12.5平方分米,平行四边形的面积是( )平方分米,三角形的面积是( )平方分米。

(5)一个三角形和一个平行四边形的面积相等,底也相等,如果三角形的高是10米,那么平行四边形的高是( )米;如果平行四边形的高是10米,那么三角形的高是()米。

(二)判断

1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。( ×)

2、等底等高的两个三角形,面积一定相等。 (√ )

3、两个三角形一定可以拼成一个平行四边形。 ( ×)

4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。()

(5)两个面积相等的三角形可以拼成一个平行四边形。(×)

(6)等底等高的两个三角形,面积一定相等。( √ )

(7)三角形面积等于平行四边形面积的一半。(× )

(8)三角形的底越长,面积就越大。(× )

(9)三角形的底扩大2倍,高扩大3倍,面积就扩大6倍。(√ )

五、作业:85页做一做和练习十六第1、2、3、4题

板书设计:

三角形面积的计算

因为:平行四边形的面积=底×高, 例1… …

三角形面积=拼成的平行四边形的一半, 100×33÷2=1650(cm)

所以三角形面积=底×高÷2

S=ah÷2

三角形的面积教学设计 15

教学内容:

《现代小学数学》第九册第31~35页,三角形面积的计算。

教学目标:

一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

二、能运用三角形面积计算公式进行有关的计算。

三、渗透对立统一的辩证思想。

教学过程:

一、复习引入。

1.准备练习:你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?

出示:

2.提问:图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?

3.揭题:大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。(出示课题)

【设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。】

二、新课展开。

(一)实践活动。

1.让学生拿出已准备好的如下一套图形。(同桌合作)

(1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。

(2)找出与平行四边形等底等高的三角形,将相应的编号填入表格内。

(3)分组讨论:

①各三角形的面积是多少?请填入表格内。

②三角形的面积怎样计算?

(4)汇报、交流,初步得出三角形面积计算方法。

【设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。】

2.验证。

(1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的平行四边形。

数学课堂教学参谋

(2)汇报、交流:学生有几种剪拼法,就交流几种。如:

6×4÷2 6×(4÷2)

=12(平方厘米) =12(平方厘米)

6×4÷2 6÷2×4

=12(平方厘米) =12(平方厘米)

【设计意图:通过验证,培养学生科学的态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。】

(二)归纳、小结。

1.从上面的实践活动中,你能说出求三角形面积的计算公式吗?三角形的面积同哪些因素有关?证明“三角形面积=底×高÷2”。(板书:三角形面积=底×高÷2)

2.如果用s表示三角形的面积,a和h分别表示三角形的底和高,那么三角形的面积公式可以怎么写?(板书: s= ah÷2)

(三)应用。

例 一块三角形钢板,底是8米,高是2.5米,它的面积是多少?

学生试做后,反馈、评讲。

【设计意图:通过试做例题,让学生及时把发现的三角形面积计算方法应用于实践,同时起到及时巩固作用。】

三、巩固练习。

(一)基本练习。

1.口算出每个三角形的面积。

①底8米,高7米 ②底5分米,高12分米③a:4厘米,h:2.5厘米 ④a:20分米,h:5.4分米

2.课本35页第②题,看图填写答案。(每一格代表1平方厘米)

这些三角形的高都是____厘米,底都是____厘米。

这些三角形的面积都是:□×□÷2=□(平方厘米)。

3.先量一量,标出图形的长度后,再计算各三角形的面积。

【设计意图:通过三道基本练习,进一步促进全体学生掌握三角形面积的计算方法,尤其是第3道题,使学生进一步明确要求三角形面积,需要知道三角形的.底和高。】

(二)分层练习。

a组学生:做选择题。

①求右图面积的算式是( )。

a.9×4÷2 b.15×4÷2

c.15×9÷2 d.15×4

②求右图面积的算式是( )。

a.5.2×3.5÷2

b.5.2×4.1÷2

c.4.1×3.5 d.4.1×3.5÷2

③求下图面积的算式是( )。

a.25×20 b.18×25

c.18×20 d.18×20÷2

b组学生:做课本第15页第

②题:在格子图上画面积都是12平方厘米的三角形(每一小格表示1平方厘米),并在表中分别填上所有三角形的底和高。(图、表见课本。略)

c组学生:先求出下面三个三角形abc、bcd、bce的面积。再比较一下,它们的面积相等吗?为什么?

【设计意图:通过分层练习,使 a、b、c三层的学生在数学思维、数学能力方面均有提高,以体现因材施教的原则。】

四、课堂小结。

这节课研究了哪些内容?三角形面积计算方法是什么,你是怎么研究出来的?

【设计意图:通过提问,不仅回顾了所学知识,而且总结了所研究的方法,真正体现出不仅要授之以“鱼”,更要导之以“渔”。】

五、布置作业。(略)

(此文获“第二届全国小学课堂教学征文大赛”一等奖)

《三角形的面积教学设计15篇(精华).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式